

Third Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Engineering Mathematics - III
Time: 3 hrs.

Note: Answer any FIXE full questions, choosing ONE full question from each module.

Module- 1

1 a. Find the Fourier series expansion for the periodic function $f(x)$, if in one second $f(x)=\left\{\begin{array}{lr}0 ; & -\pi<x<0 \\ x ; & 0<x<\pi\end{array}\right.$.
(08 Marks)
b. Expand the function $f(x)=x(\pi-x)$ over the interval $(0, \pi)$ in half range Fourier cosine series.
(06 Marks)
c. The following value ©f function y gives the displacement in inches of a certain machine part for rotations x of a flywheel. Expand y -in terms of Fourier series upto the second harmonic.

Rotations	x	0	$\pi / 6$	$2 \pi / 6$	$3 \pi / 6$	$4 \pi / 6$	$5 \pi / 6$	π
Displacement	y	0	9.2	14.4	17.8	17.3	11.7	0

(06 Marks)

2 a. Find the Fourier series expansion for the function
$f(x)=\left\{\begin{array}{cc}\pi x ; & 0 \leq x \leq 1 \\ \pi(2-x) ; & 1 \leq x \leq 2\end{array}\right.$
and deduce $\frac{\pi^{2}}{8}=\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}}$.
(08 Marks)
b. Expand in Faurier series $f(x)=(\pi-x)^{2}$ over the interval $0 \leq x \leq 2 \pi$.
(06 Marks)
c. The following table gives the variations of periodic aurrent over a period T .

t (secs)	0	$\mathrm{~T} / 6$	$\mathrm{~T} / 3$	$\mathrm{~T} / 2$	$2 \mathrm{~T} / 3$	$5 \mathrm{~T} / 6$	T
A (Amps)	1.98	1.30	1.05	1.30	-0.88	-0.25	1.98

Expand the function (periodic current) by Fourier series and show that there is a direct current part of 0.75 amp and also obtain amplitude of first harmonic.
(06 Marks)
Module-2
3 a. Find Fourier transform of $f(x)=\left\{\begin{array}{cl}1-x^{2} ; & |x|<1 \\ 0 ; & |x|>1\end{array}\right.$
and hence evaluate $\int_{0}^{\infty} \frac{x \cos x-\sin x}{x^{3}} d x$.
(08 Marks)
b. Find Fourier Cosine transform of the function :

$$
f(x)=\left\{\begin{array}{cc}
4 x ; & a<x<1 \tag{06Marks}\\
4-x ; & 1<x<4 \\
0 ; & x>4
\end{array}\right.
$$

c. Find z-transforms of : i) $a^{n} \sin n \theta$ ii) $a^{-n} \cos n \theta$.
(06 Marks)

OR

4 a. Find Fourier sine transform of $f(x)=e^{-|x|}$ and hence evaluate : $\int_{0}^{\infty} \frac{x \sin m x}{1+x^{2}} d x, m>0$.
(08 Marks)
b. Find z -transform of $\mathrm{u}_{\mathrm{n}}=\cosh \left(\frac{\mathrm{n} \pi}{2}+\theta\right)$.
(06 Marks)
c. Solve the difference equation using z-\$Fansforms $u_{n+2}+6 u_{n+1}+6 u_{n}=2^{n}$. Given $u_{0}=u_{1}=0$.
(06 Marks)

Module-3

5 a. If θ - is the acute angle Hetween the two regression lines relating the variables x and y, show that $\operatorname{Tan} \theta=\left(\frac{1-r^{2}}{r}\right)\left(\frac{\sigma_{x} \sigma_{y}}{\sigma_{x}{ }^{2} \sigma_{y}{ }^{2}}\right)$.
(08 Marks) Indicate the significance of the cases $r= \pm 1$ and $r=0$.
b. Fit a straiglt line $y=a x+b$ for the data.

x	12	15	21	25
y	50	70	100	120

(06 Marks)
c. Find a real root of the equation by using Newton-Raphson method near $x=0.5, \mathrm{xe}^{\mathrm{x}}=2$, perform three iterations.
(06 Marks)

OR

6 a. Compute the coefficient of correlation and equation of regression of lines for the data :

x	1	z	3	4	5	6	7
y	9	8	10	12	11	13	14

(08 Marks)
b. The Growth of an organism affer x - hours is given in the following table :

x (hours)	5	15	20	30	35	40
y (Growth)	10	14	25	40	50	62

Find the best values off a and b in the forrrula $y=a e^{b x}$ to fit this data.
(06 Marks)
c. Find a real root of the equation $\cos x=3 x-1$ correct to three decimals by using Regula False position method, given that røot lies in between 0.6 and 0.7 . Perform three iterations.
(06 Marks)

Module-4

7 a. Find $y(8)$ from $y(1)=24, y(3)=120, y(5)=336, y(7)=720$ by using Newton's backward difference interpolation fibrmula.
(08 Marks)
b. Define $f(x)$ - as a polynomial in x for the following data using Newton's divided difference formula.
(06 Marks)

x	-4	-1	0	2	5
$f(x)$	1245	33	5	9	1335

c. Evaluate the integral $I=\int_{0}^{6} \frac{d x}{4 x+5}$ using Simpson's $\frac{1}{3}$ rd rule using 7 ordinates.
(06 Marks)

OR

8 a. For the following data calculate the differences and obtain backward difference interpolation polynomial. Hence find $\mathrm{f}(0.35)$.
(08 Marks)

x	0.1	0.2	$\AA .3$	0.4	0.5
$\mathrm{f}(\mathrm{x})$	1.40	1.56	1.76	2.0	2.28

b. Using Lagrange's interpolation find y when $\mathrm{x}=10$.

x	5	6	9	11
y	12	13	14	16

(06 Marks)
c. Evaluate $\int_{0}^{1} \frac{x}{1+x^{2}} d x$ by Whaddle's rule considering seven ordinates.
(06 Marks)

Module-5

9 a. Verify the Green's theorem in the plane for $\int_{c}\left(x^{2}+y^{2}\right) d x+3 x^{2} y$ dy where C - is the circle $x^{2}+y^{2}=4$ traced in positive sense.
(08 Marks)
b. Evaluate $\int_{C}(\sin z . d x-\cos x d y+\sin y d x)$ by using Stokes theorem, wheks $C-$ is the boundary of the rectangle $0 \leq x \leq \pi, 0 \leq y \leq 1$ and $z=3$.
(06 Marks)
c. Find the curve on which the functional: $\int_{\mathbb{C}}\left[y^{\prime 2}+12 x y\right] d x$ with $y(0)=0, y(1)=1$ can be extremised.
(06 Marks)

OR

10 a. Given $\mathrm{f}=\left(3 \mathrm{x}^{2}-\mathrm{y}\right) \mathrm{i}+\mathrm{xz} \boldsymbol{i}+(\mathrm{yz}-\mathrm{x}) \mathrm{k}$ evaluate $\int_{\mathrm{c}} \mathrm{f} \cdot \mathrm{dr}$ from $(0,0,0)$ to $(1,1,1)$ along the paths $x=t, y=t^{2}$ and $z=t^{3}$.
(08 Marks)
B. Derive Euler's equation in the form $\frac{\partial f}{\partial y}-\frac{d}{d x}\left(\frac{\partial f}{\partial y^{\prime}}\right)=0$.
(06 Marks)
c. Prove that the shortest distance between two points in a plane is a straight line.

Third Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Analog and Digital Electronics

Time: 3 hrs.
Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Explain construction and working principle of operations of n-channel D-MOSFET along with its drain and trans-conductance characteristics.
(10 Marks)
b. Write the difference between JEFT's and MOSFET's. (05 Marks)
c. For a given self-bias configuration in Fig.Q.1(c), determine: i) $1_{d_{9}}$ and V_{g} 'eq
ii) $V_{d s}$ and V_{D}.
(05 Marks)

Fig.Q.l(c)
OR
2 a. List of differences between ideal and practical op-amp amplifier.
(06 Marks)
b. With a neat diagram and waveform explain astable multivibrator using 555 timers. (07 Marks)
c. With neat diagram and waveform explain the working of relaxation oscillation oscillator.
(07 Marks)

Module-2

3 a. Explain positive and negative logic. List the equivalence between them.
(08 Marks)
b. Find the minimal SOP form for the given min-terns using K-map.
$F(A, B, C, D)=\sum m(4,5,6)+d(10,12,13,14,15)$.
(06 Marks)
c. Find the minimal POS form for the given MAX-TERM using K-map.
$f(a, b, c, d)=\pi M(5,7,8,9,12)+d(0,6,10,15)$.
(06 Marks)

OR

4 a. Using Quine-Mc-Clusky method simplify the following Boolean equation.
$f(a, b, c, d)=\sum m(0,1,10,11,13,15)+d(2,3,12,14)$.
(10 Marks)
b. Define Hazard. Explain different types of Hazards.
c. Write the VHDL code for the circuit shown in Fig.Q.4(c):
(04 Marks)

Fig.Q.4(c)
1 of 2

Module-3

5 a. What is multiplexers? Design 8:1 multiplexer using 2:1 multiplexers.
(08 Marks)
b. Explain the purpose of using parity generators and checkers using suitable illustrations.
(06 Marks)
c. What is magnitude comparator? Explain 1 bit magnitude comparator.

OR

6 a. Design 7 -segment decoder using PLA.
(06 Marks)
b. With neat logic diagram and truth table, explain negative edge triggered J-K flip-flop.
(06 Marks)
c. What is an Adder? Explain with truth table the half Adder, full Adder, half subtractor and full subtractor.
(08 Marks)

Module-4

7 a. With a neat logic diagram and truth table explain the working of J-K master slave flip-flop using NAND gates.
(08 Marks)
b. Give characteristic table, characteristic equation and excitation table for S-R, D and J-K flip-flop.
(08 Marks)
c. Write a VHDL code for D-flip-flop.
(04 Marks)
a. What is a register? With neat diagram explain 4-bit parallel-in-serial out shift register.
(08 Marks)
b. Explain with a neat diagram how a shift register can be applied for serial-addition.
(06 Marks)
c. Differentiate between synchronous and asynchronous counters.
(06 Marks)

Module-5

9 a. Define counter. Design a synchronous counter for the sequence, $0 \rightarrow 3 \rightarrow 1 \rightarrow 2 \rightarrow 6 \rightarrow 7 \rightarrow 0 \rightarrow 3$ using J-K flip flop.
(12 Marks)
b. Explain with neat diagram the working principle of Digital Clock.

OR

10 a. Explain the binary ladder with digital input of 1000 .
(06 Marks)
b. Explain 2-bit simultaneous A/D converter.
(08 Marks)
c. Explain the terms accuracy and resolution for D/A converters.

Third Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Data Structure and Applications

Time: 3 hrs.

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Define data structure. List and explain data structure operations.
(05 Marks)
b. Write the bubble sort algorithm.
(05 Marks)
c. List and explain in detail, three types of structures used to store the strings.
(10 Marks)

OR

2 a. Explain dynamic memory allocation.
(05 Marks)
b. Explain about the representation of two dimensional arrays in memory.
c. What do you mean by pattern matching? Let P and T be strings with lengths R and S respectively and are stored as arrays with one character per element. Write a pattern matching algorithm that finds index P in T. Also discuss about this algorithm.
(10 Marks)

Module-2

3 a. Define stack. Write the procedure for two basic operations associated with stack. (05 Marks)
b. Write a short note on priority queues.
(05 Marks)
c. Define recursion. What are the properties of recursive procedure? Write recursive procedure for : i) Tower of Hanoi ii) Factorial of a number.
(10 Marks)

OR

4 a. Define queues. Write QINSERT and QDELETE procedures for queues using arrays.
(10 Marks)
b. Write the postfix form of the following expression.
$\mathrm{A}+(\mathrm{B} * \mathrm{C}-\mathrm{D} / \mathrm{E} \uparrow \mathrm{F}) * \mathrm{G}) * \mathrm{H}$.
(05 Marks)
c. Write a note on Ackermann function.

Module-3

5 a. Write the following algorithm for singly linked list.
i) Inserting ITEM as the first node in the list
ii) Deleting the node with the given ITEM of information.
(10 Marks)
b. Write the node structure for linked representation of polynomial. Write the function to add two polynomials represented using linked list.
(10 Marks)

OR

6 a. Write the functions to perform the following :
i) Inverting a singly linked list
ii) Concatenating the singly linked list
iii) Finding the length of a circular list.
(10 Marks)
b. Write a note on header linked list.
c. For the given sparse matrix, write the diagrammatic linked list representation.
$\left[\begin{array}{llll}2 & 0 & 0 & 0 \\ 4 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \\ 8 & 0 & 0 & 1 \\ 0 & 0 & 6 & 0\end{array}\right]$.

Module-4

7 a. What is a tree? write the routines to traverse the given string using
i) Pre-order traversal
ii) In-order traversal
iii) Post-order traversal.
(10 Marks)
b. Define binary search tree. Write the recursive search and iterative search algorithm for a binary search free.
(10 Marks)

OR

8 a. Write the routines for :
i) Copying binary trees
ii) Testing for equality of binary trees.
(10 Marks)
b. List the rules to construct the threads. Write the routines for inorder traversal of a threaded binary tree.

Module-5

9 a. Write an algorithm for an insertion sort. Also discuss about the complexity of insertion sort.
(10 Marks)
b. Write an algorithm for : i) Breadth first search ii) depth first search.
(10 Marks)

OR

10 a. Define graph. Explain in detail about directed graphs.
b. Explain in detail about static and dynamic hashing.

USN

Third Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Computer Organization

Time: 3 hrs .
Max. Marks: 100
Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Explain with a neat diagram the connection between the processor and the computer memory.
(05 Marks)
b. Explain the Basic Instruction types with example.
(05 Marks)
c. Define Addressing mode, explain the various addressing modes with example.
(10 Marks)

OR

2 a. Write an assembly program that reads a line of characters and display it. (05 Marks)
b. What are assembler directives? Point out and explain the various directives with example.
(05 Marks)
c. Point out various shifts and rotate instruction and example with a neat diagram and example.
(10 Marks)

Module- 2

3 a. Define interrupt. Point out and explain the various ways of enabling and disabling interrupts. (07 Marks)
b. What are Exceptions? Point out and explain the different kinds of exceptions. (${ }^{55}$ Marks)
c. What is interrupt nesting, explain with a neat diagram the implementation of interrupt priority, using individual interrupt request and acknowledge lines.
(08 Marks)

OR

4 a. What is Bus Arbitration? Explain centralized and distributed arbitration. With a neat diagram.
(10 Marks)
b. Explain Universal serial Bus tree structure and split bus operation with a neat diagram.
(10 Marks)

Module-3

5 a. Explain synchronous DRAMS with a block diagram.
(05 Marks)
b. Define ROM ; point out and explain various types of ROMS.
(05 Marks)
c. Define cache memory, explain various types of it with a neat block diagram.
(10 Marks)

OR

6 a. What is Virtual memory? Explain virtual memory organization.
(07 Marks)
b. Explain the optical disk organization with a neat diagram.
(10 Marks)
c. Define Hit rate and miss penalty.
(03 Marks)

Module-4

7 a. Draw 4-bit carry-look ahead adder and explain.
(10 Marks)
b. Perform multification for -13 and +9 using Booth's Algorithm and explain Booth's Algorithm process.
(10 Marks)

OR

8 a. Explain with a neat figure the circuit arrangement for binary division.
b. Explain IEEE standard for floating point number.
(10 Marks)

Module-5

9 a. Explain three - bus organization of the datapath with a neat block diagrams.
(06 Marks)
b. Explain Hard Wired Control Unit Organization in a processing unit.
c. Write the control sequence for execution of the Instruction. Add $\left(R_{3}\right), R_{1}$ in the execution of a complete instruction.

OR

10 a. Explain briefly the block diagram of a digital camera.
b. With a neat block diagram, explain the working of microwave oven in an embedded system.

Third Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Unix and Shell Programming

Time: 3 hrs.
Max. Marks: 100
Note: Answer any FIVE full questions, choosing ONE full question from each module.

1 a. By writing a neat diagram, explain the architecture of UNIX.
(10 Marks)
b. Discuss the following commands
i) ℓ_{s}
ii) who
iii) cat iu) echo
(10 Marks)
2 a. Explain the features offUNIX.
(10 Marks)
b. Explain the commands used to add, modify and delete users.
(10 Marks)

Module- 2

3 a. What is a file? Explain different categonies of files.
(10 Marks)
b. By giving example, explain the following commands.
i) pwd
ii) cd
iii) mkdir
iv) rnedir.
(10 Marks)
4 a. Discuss $l s$ commands with options.
(10 Marks)
b. Explain absolute method of changing permissions by giving example.
(10 Marks)

Module-3

5 a. Explain different m@des of Vi editor (10 Marks)
b. Discuss ex-mode commands of Vi editor.
(10 Marks)
6 Explain OR
6 a. Explain shell interpretive cycle.
(04 Marks)
b. Which are standard files used in UNIX? Explain.
(08 Marks)
c. By giving examples, explain extended regular expression.
(08 Marks)

Module-4

7 a. With example, explain logical operators in shell programming.
(05 Marks)
b. Discuss for statement in shell script with example.
(05 Marks)
a. Write a shell program to do the following :
i) List of files
ii) Processes of user
iii) Today's date
vi) Users of the system. Using case conditional.
(10 Marks)
OR

8 a. Discuss hoad and tail commands along with its options.
(10 Marks)
b. By specifying examples, explain hard and soft links.
(10 Marks)

Module-5

9 a. Along with the options and examples, explain ps command.
(10 Marks)
b. By giving example, explain nice and nohup commands.
(10 Marks)
OR
10 a. Explain string handling function of perl.
(06 Marks)
b. With example, explain split and join function of perl.
c. What is subroutine? Explain by giving example.

Third Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Discrete Mathematical Structures

Time: 3 hrs.

Note: Answer any FIVE full questions, choosing one full question from each module.

Module- 1

1 a. Define proposition, tautology, contradiction. Determine whether the following compound statement is a tautology or not.

$$
\{(\mathrm{p} \vee \mathrm{q}) \rightarrow \mathrm{r}\} \leftrightarrow\{\neg \mathrm{r} \rightarrow \neg(\mathrm{p} \vee \mathrm{q})\}
$$

(06 Marks)
b. Using the laws of logic, show that $(\mathrm{p} \rightarrow \mathrm{q}) \wedge[\neg \mathrm{q} \wedge(\mathrm{r} \vee \neg \mathrm{q})] \Leftrightarrow \neg(\mathrm{q} \vee \mathrm{p})$
(07 Marks)
c. Establish the validity of the following argument

$$
\begin{aligned}
& \forall \mathrm{x}, \mathrm{p}(\mathrm{x}) \vee \mathrm{q}(\mathrm{x}) \\
& \exists \mathrm{x}, \neg \mathrm{p}(\mathrm{x}) \\
& \forall \mathrm{x}, \neg \mathrm{q}(\mathrm{x}) \vee \mathrm{r}(\mathrm{x}) \\
& \forall \mathrm{x}, \mathrm{~s}(\mathrm{x}) \rightarrow \neg \mathrm{r}(\mathrm{x}) \\
& \therefore \exists \mathrm{x}, \neg \mathrm{~s}(\mathrm{x})
\end{aligned}
$$

(07 Marks)

OR

2 a. Define converge, inverse and contra positive of a conditional. Find converse, inverse and contra positive of $\forall x,(x>3) \rightarrow\left(x^{2}>9\right)$, where universal set is R.
(06 Marks)
b. Test the validity of the following arguments:
i) If there is a strike by students, the exam will be postponed but the exam was not postponed.
\therefore there was no strike by students.
ii) If Ravi studies, then he will pass in DMS.

If Ravi doesn't play cricket, then he will study.
Ravi failed in DMS.
\therefore Ravi played cricket
(06 Marks)
c. Define dual of logical statement. Write the dual of the statement $\left(p \vee T_{0}\right) \wedge\left(q \vee F_{0}\right) \vee\left(r \wedge s \wedge T_{0}\right)$.
(02 Marks)
d. Let $p(x): x \geq 0$

$$
q(x): x^{2} \geq 0 \text { and } r(x): x^{2}-3 x-4=0
$$

Then, for the universe completing of all real numbers, find the truth values of :
i) $\exists x\{p(x) \wedge q(x)\}$
ii) $\forall \mathrm{x}\{\mathrm{p}(\mathrm{x}) \rightarrow \mathrm{q}(\mathrm{x})\}$
iii) $\exists x\{p(x) \wedge r(x)\}$
(06 Marks)

Module-2
3 a. Prove that for any positive integer $n, \sum_{i=1}^{n} \frac{F_{i-1}}{2^{i}}=1-\frac{F_{n+2}}{2^{n}}, \quad F_{n}$ denote the Fibonacci number.
b. How many positive integers n can we form using the digits 3, 4, 4, 5, 5, 6, 7 if (06 Marks) exceed 5,000,000?
(07 Marks)
c. Determine the coefficient of $a^{2} b^{3} c^{2} d^{5}$ in the expansion of $(a+2 b-3 c+2 d+5)^{16}$.
(07 Marks)

OR

4 a. Prove by using principle of mathematical induction

$$
\sum_{i=1}^{n} i \cdot 2^{i}=2+(n-1) \cdot 2^{n+1}
$$

(06 Marks)
b. A committee of 12 is to be selected from 10 men and 10 women. In how many ways can the selection be carries out if
i) There are no restrictions
ii) There must be six men and six women
iii) There must be an even number of women.
(07 Marks)
c. Determine the number of integer solutions of $x_{1}+x_{2}+x_{3}+x_{4}=32$ where $x_{i} \geq 0,1 \leq i \leq 4$.
(07 Marks)

Module-3

5 a. If $\mathrm{A}=\{1,2,3,4,5\}$ and there are 6720 injective functions $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$, what is $|\mathrm{B}|$? (03 Marks)
b. Let m, n be positive integers with $1<\mathrm{n} \leq \mathrm{m}$ then prove that,

$$
\mathrm{s}(\mathrm{~m}+1, \mathrm{n})=\mathrm{s}(\mathrm{~m}, \mathrm{n}-1)+\mathrm{ns}(\mathrm{~m}, \mathrm{n})
$$

(05 Marks)
c. If $f: R \rightarrow R$ defined by $f(x)=x^{2}$, determine whether the function is one-to-one and whether it is onto. If it is not onto, find the range.
(06 Marks)
d. Let $\mathrm{A}=\{1,2,3,4,5\} \times\{1,2,3,4,5\}$ and define R on A by $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \mathrm{R}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ if $x_{1}+y_{1}=x_{2}+y_{2}$, verify that R is an equivalence relation on A.
(06 Marks)

OR

6 a. If $f: R \rightarrow R$ defined by $f(x)=x^{3}$, determine whether f is invertible and if determine f^{1}.
(05 Marks)
b. Define the relation R for two lines ℓ_{1} and ℓ_{2} by $\ell_{1} R \ell_{2}$ if ℓ_{1} is perpendicular to ℓ_{2}. Determine whether the relation is reflexive, symmetric, antisymmetric or transitive.
(05 Marks)
c. Let $\mathrm{A}=\{1,2,3,6,9,18\}$ and R on A by xRy if $\mathrm{x} \mid \mathrm{y}$. Draw the Hasse diagram for the $\operatorname{poset}(\mathrm{A}, \mathrm{R})$.
(05 Marks)
d. For $\mathrm{A}=\{1,2,3,4\}$, let $\mathrm{R}\{(1,1)(1,2)(2,3)(3,3)(3,4)\}$ be a relation on A . Draw the directed graph G on A that is associated with R. Do likewise for R^{2}, R^{3}.
(05 Marks)

Module-4

7 a. Determine the number of positive integers n where $1 \leq \mathrm{n} \leq 100$ and n is not divisible by 2,3 or 5 .
(06 Marks)
b. How many derangements are there for $1,2,3,4$ and 5 ?
(07 Marks)
c. Solve the recurrence relation $2 a_{n+3}=a_{n+2}+2 a_{n+1}-a_{n}, n \geq 0, a_{0}=0, a_{1}=1, a_{2}=2$.
(07 Marks)
OR
8 a. In how many ways can the 26 letters of the alphabet be permuted so that none of the patterns car, dog, pun or byte occurs?
(06 Marks)
b. Find the root polynomial for 3×3 board using the expansion formula.
(07 Marks)
c. The number of bacteria in a culture is 1000 (approximately) and this number increases 250% every two hours. Use a recurrence relation to determine the number of bacteria present after one day.
(07 Marks)

Module-5

9 a. Show that the graphs Fig.Q9(a)(i) and (ii) are isomorphic.

Fig.Q9(a)(i)

Fig.Q9(a)(ii)
(06 Marks)
b. Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be an undirected graph or multigraph with no isolated vertices. Then prove that G has an Euler circuit if and only if G is connected and every vertex in G has even degree.
(07 Marks)
c. Construct an optimal prefix code for the symbols a, b, c, d, e, f, g, h, i, j that occur with respective frequencies $78,16,30,35,125,31,20,50,80,3$.
(07 Marks)

OR

10 a. Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a connected undirected graph. What is the largest possible value for $|\mathrm{V}|$ if $|E|=19$ and $\operatorname{deg}(v) \geq 4$ for all $v \in V$?
(06 Marks)
b. For every tree $\mathrm{T}=(\mathrm{V}, \mathrm{E})$ if $|\mathrm{V}| \geq 2$, then prove that T has atleast two pendant vertices.
(07 Marks)
c. For the tree shown in Fig.Q10(c), list the vertices according to a preorder and a postorder traversal.

Fig.Q10(c)
(07 Marks)

Third Semester B.E. Degree Examination, Dec.2018/Jan. 2019

Constitution of India, Professional Ethics and Human Rights (CPH)

(COMMON TO ALL BRANCHES)

Time: 2 hrs.]
[Max. Marks: 30

INSTRUCTIONS TO THE CANDIDATES

1. Answer all the thirty questions, each question carries ONE mark.
2. Use only Black ball point pen for writing / darkening the circles.
3. For each question, after selecting your answer, darken the appropriate circle corresponding to the same question number on the OMR sheet.
4. Darkening two circles for the same question makes the answer invalid.
5. Damaging/overwriting, use of whiteners on the OMR sheets are strictly prohibited.
6. The constitution of India derives its authority from the
a) Parliament of India
b) Supreme Court of India
c) People of India
d) Constituent Assembly of India
7. It is not the objective enshrined in the preamble
a) Equality of status
b) Secure shelter and proper livelihood to all
c) Liberty of thought and expression
d) Social, economic and political justice
8. Right of decent environment includes
a) Freedom to reside in any part of India.
b) Right to religion
c) Right to equal protection of law.
d) Right to life.
9. The Emergency provisions incorporated in the Constitution of India were influenced by the Constitution of
a) German Reich
b) U.S.A
c) Russia
d) Canada
10. The Directive Principles of State Policy directs the State to secure to all workers
a) Minimum wages
b) Fair wages
c) Living wages
d) Standard wages
11. This is not a fundamental duty.
a) To defend the country
b) To abjure violence
c) To uphold and protect sovereignty of India
d) To make scientific improvement
12. The ground for the impeachment of President is
a) Failure to follow the advice given by the Prime Minister
b) Unable to discharge his duties due to old age
c) Violation of the constitution
d) Misbehaviour with foreign dignitaries.
13. The size of the Union council of ministers including Prime Minister shall not be more than
\qquad percent of the members strength of Lok Sabha.
a) 10
b) 15
c) 18
d) 20
14. The total number of elected members from various states in Lok Sabha are
a) 530
b) 540
c) 550
d) 500
15. This is not the jurisdiction of the Supreme Court.
a) Original Jurisdiction
b) Emergency Jurisdiction
c) Appellate Jurisdiction
d) Advisory Jurisdiction.
16. Collective responsibility of the State Council of Ministers means, all Ministers are collectively responsible to the
a) Chief Minister
b) Governor
c) State Legislative Council
d) State Legislative Assembly.
17. The Governor may resign his office by writing to
a) The Prime Minister
b) The President
c) The Chief Justice of High Court
d) The Chief Minister of the State
18. The Election Commission of India does not conduct election to
a) The Pârliament
b) The office of the President
c) The post of Prime Minister
d) The office of the Vice President
19. What is the tenure of the Chief Election Commissioner and other election commissioners?
a) 3 years or upto 62 years of age
b) 5 years or upto 65 years of age
c) 6 years or upto 65 years of age
d) 5 years or upto 70 years of age
20. The procedure for amending the Indian Constitution is detailed under
a) Art. 356
b) Art. 360
c) Art. 366
d) Art. 368
21. Art. 21 A - Right to Education as a Fundamental Right was added to the Indian
constitution by
a) $61^{\text {st }}$ Constitution Amendment
b) $74^{\text {th }}$ Constitution Amendment
c) $86^{\text {th }}$ Constitution Amendment
d) $91^{\text {st }}$ Constitution Amendment
22. When the State Emergency is in operation, the President cannot interfere in the matters of
a) State Judiciary
b) State Executive
c) State Legislature
d) All of these.
23. While Proclamation of National Emergency is in operation, the President cannot suspend certain Fundamental Rights. These are
a) Art. 14 and Art. 15
b) Art. 14 and Art. 16
c) Art. 20 and Art. 21
d) Art. 32
24. B. P. Mandal commission appointed in 1978 by the President of India dealt with
a) Rights of the minority
b) Laws relating to child labour
c) Laws relating to sexual harassment at work places
d) Reservation for other backward classes (OBC) people in Government Jobs.
25. Who are considered to be vulnerable group?
a) Women and children
b) Scheduled Caste people
c) Scheduled Tribe people
d) All of these
26. Who can be appointed as the Chairman of the National Human Rights Commission?
a) Any sitting judge of the Supreme Court
b) Any retired Chief Justice of the Supreme Court
c) Any person appointed by the President
d) Retired Chief Justice of any High Court
27. National Human Rights commission is a
a) Statutory body
b) Constitutional body
c) Multilateral Institution
d) Both (a) and (c)
28. Powers, authority and responsibilities of Municipalities have been provided under
a) Article 243 N
b) Article 243 W
c) Article 243 M
d) None of these
29. Which among the following is considered as the training ground for the development of democratic institutions?
a) Nagar Panchayats
b) Municipalities
c) Municipal Corporations
d) Gram Panchayats
30. Good works mean
a) Superior work done with great care and skill
b) Responsible work
c) Work above and beyond the call of duty
d) Work involving high risk.
31. Engineering profession is considered to be like a building, its foundation is
a) Hard and sincere work
b) Expert engineering knowledge and skill
c) Sound common sense and expert knowledge
d) Honesty
32. In engineering research work, cooking means
a) Boiling under pressure
b) Retaining only those results which fit the theory
c) Making deceptive statements
d) Misleading the public about the quality of the product
33. Engineering Ethics is a
a) Preventive ethics
b) Natural ethics
c) Technical ethics
d) Scientifically developed ethics
34. The author of a book retains the copy right for \qquad after his or her death.
a) 20 years
b) 30 years
c) 60 years
d) 10 years
35. The public is put to increased risk by allowing increased number of deviations from specified standards of safety and acceptable risk is known as
a) Normal accident
b) Normalizing deviance
c) Risk assessment
d) Overestimated risk.

Third Semester B．E．Degree Examination，Dec．2018／Jan． 2019戸ત్నుఠ్త ひునుતు
（COMMON TO ALL BRANCHES）
Time： 2 hrs．］
［Max．Marks： 30

సేృఔసిగెళు

 ల్రిలణియున్ను అందరా A，B，C అథటా D యున్ను उట్టిల్లచంత ఈడ్డ్యంకృాగ గురుకినువుచు అభ్యథిఁయు జవాబ్దారియూగిరుత్తది．

 థ్రె్నిగ ఎరడు లుత్తరటస్ను గురుతిసుల్రదు అఱూన్య．
5．ఎల్ల్ లుత్తరగళన్ను నిటుగి ఒదగిసెలాద ఓ．ఎం．ఆరో లుత్తర ఱృత్రిశాయు
 గురుతు టూడఠబొలుం．

అ）ద．రా．బొలంద్రె
బ）శా．ఱి．ఱుట్టృ

$అ) \bigcirc$
బ） e
ซ） 2
๔）๔

అ）ధంరఱండద
బ）బొంగళృరిన
モ）నినుగణద
ఔ）బిళగంఱియు
 ळొళిద్దు：

అ）ભులినాడు
బ）ేరాబిళి
₹）ఱురుభృమి
డ）దిలడ్ఠనగర త్రుదొల

₹）భరఱణద చురితు తయూరర

 యీలగిది？
అ）ఎిడంబనొ
బ）నాటృ
¡）ভ్రృలు 千థన
డ）ভంత్రజ్ఞన లలఖన

అ）రిస్తు
బ）థలల్చత్య దరిసు

డ）బొలలిన ఎల్లప్రు

అ）దు：ఖ
బ）నలివు

๘）ఒలథు

అ）Јంత్రజ్ఞన లలఖన
బ）ฝినాతలద లాలవన

๘）నంటఈ

11．ర్రిల పి．లంశొలర＇గుబ్బజ్యిగృడం＇లఆనదల్లి జింతిసిరుฝ్రదు ：
అ）భట్టంగిగ బదుచుర
బ）దిలనతియు బదుఈు
₹）స్పుం\＆శయయు బదుచు
๘）అసలోనతియు బదుళు

12．＇జన＇యృృహ లింగ
అ）స్తి，లింగ
బ）$山 ల ల_{0} \circ \pi$
ъ）అలింగ
๘）నఱుంన్లింగ

అ）స్టృష్ట్ర ఱూకిః
బ）నొలర నిరుอఱఱ
Ə）ふౌజన్య
డ）ฝాలలిన ఎల్లథు

అ）તులబణદ તంధి
బ）నెఱణణ ధిలఖెణ నుంధి

๘）టృద్ధి శుంధి

15．＇ఎిల్ప డూనबత＇ఎనస్ను థ్రితారిదిసుత్తది？
అ）₹ందాభౌర

డ）డుత్య ద్విలఱ

అ）చึงロもణ
బ）బడఁగణ
も）ड゚ంもぁ
๘）ఱొっ๘ణ

అ）భూ○త ซరల
బ）రాజయiงen ซoల
₹）యులుగండ ซరల
డ）రాळు ซంల

అ）बాణణ జిత్ర
బ）థ్రయయం జిత్ర
モ）త్తెల జిత్ర
డ）ఔలన ఒతす్ర

అ）రొงట్టిగగ బొణ్ణొ Шひ్బు

శ）ळiంగళుब్రుదు
డ）రాగిఱుద్దిగొ బిణ్ణ

బ）ఱురింా మిలసలాతి
モ）సెటూరనతేగంగి ఔళఃఎళి
డ）శనససన ఱుదుట్
21．ర్రిల＇బందిల నదాజో＇యూరు？
అ）గులబగంఁద సెంఘి సెంతేరు
బ）బ్రిటిలరించ లుంబళి ङడాదबరు
モ）बెజ్ర ब్యాఱురిగళు
๘）గణి ఛణి

అ）ఛ్పని నెంఱత్తు
బ）సెంయోอยజనొ
も）నిదాలణపన
๘）చంఠదాన

అ）ఆనె దంఠ శుంగ్రరణ
బ）มొడ్ఠగగళ చురితు అధ్యయున

డ）कులి ఎిల్ష్ష

అ）बణఠદ ల్ర山ు Шధ్ధ \＆
బ）జอతఁయుత
も）ఱొఢ నంబిళ

అ）సెటూరద నుల్థి
బ）ఱ్లలలుచద రఱ్యుత
モ）భశ్తియు ఱరటేరతం
๘）దలితర చేనసు

 సుంగసుదాలటా＇ఈ టెఔనద రజనేళంరరరు：
అ）సెలెళజ్ఞ
బ）ซూఱురస
૪）అల్ల山ుత్రుభు
డ）బసేటణ

27．$\omega ు ల ి మ ూ ద ా ల ్ వ ర ~ బ ె ట ్ ట ్ ట ల ి ర ు ల ~ స ్ థ ్ థ: ~$
అ）అరిరినచంంటి
బ）అథణి
Ғ）అఖజలఱుర
డ）జాృళ్ళిగంల

28．＇శ్రిల సుంగنతళ్ళి రంయుణ్ణ＇యుంరు？
అ）అద్భుత భాఱణపార
బ）ఎందిటూగధరిగ సंలరిదబను
₹）బ్యంంచగగళిగ बిలలస ఱూడిదबను

అ）戸๐Ш
బ）ळరిळర

๘）ఫిట్టిలా

అ）బळురుంటియోృగిది
బ）बణణరంజిఠవాగిది
₹）జిలఱంతటాగిది
๘）ฝొలలిన ఎల్లపు

17KKK39
Question Paper Version : B \qquad
. \qquad

Third Semester B.E. Degree Examination, Dec.2018/Jan. 2019
Kannada Kali
(COMMON TO ALL.BRANCHES)
Time: 2 hrs.]
[Max. Marks: 30

INSTRUCTIONS TO THE CANDIDÁTES

1. Answer al' 'he thirty questions, each question carries GNE mark.
2. Use only Black bail point pen for writing / dankening the circles.
3. For each question, after selecting your amswer, darken the appropriate circle corresponding to the same question number on the OMR sheet.
4. Darkening two, circles for the same question makes the answer invalid.
5. Damagingoverwriting, use of whiteners on the OMR sheets are strictly prollibited

Note : Translate the following English words to Kannada [from Q No. 1 to 5]

1. Near
a) Swalpa
b) hattira
c) heege
d) hosa
2. Shop
a) Angabi
b) dukan
c) kante
d) Mane.
3. See
a) NooDu
4) $\begin{aligned} & \text { MaaDu } \\ & \text { d) } \mathrm{Du}\end{aligned}$
a) BiDu
d) $\ddagger \mathrm{Du}$
4. Moon
a) candra
b) Suurya
c) Naksatna
d) Boomi
5. Child
a) Maanava
b) Magu
c) MahiLe
d) HeNNu

Note: Write the English word for given Kannada word [From Q No. 6 to 9]
6. HaLe
a) New
b) Now
c) Not
d) Old
7. Kurci
a) Table
b) Book
c) Chair
d) Pen
8. GaNita
a) Physics
b) Biology
c) Mathem tics
d) English
9. Shaale
a) Home
b) School
c) Office
d) Room.

Note: Substitute the words from the following each seritence in appropriate place [From Q No. 10 to 12]
10. naanu uuTa maaDu
a) maaDuttene
b) maaDideya
c) maaDis"
d) maaDi
11. Namma manege baa ?
a) Baruttiy:
b) Bandi
c) BeDa
d) Baru
12. Nanma hattira Kutka.
a) KuLituko
b) KooDu
c) Kundru
d) None.

Note : Translate the Kiannada word into English. [From Q in. 13 to 22]
13. Meenu
a) Animal
b) Fish
c) Crow
d) Owl
14. Nayee
a) Pig

4
c) IIDOg
b) Cow
d) Clat
15. Alat
(a) See
c) Go
b) Come
d) Play
16. Mana
a) Home
c) Pen

b) School
d) Mind
17. Nanu
a) I
c) We
b) You
d) He
18. Maga
a) Father
c) Daughe:
b) Sister
d) Son.
19. Baa
a) Go
b) Sit
c) Visit
d) Come
20. Kaagad
a) Chair
b) Computer
c) Mouce
d) Paper
21. Avanu
a) He
b) She
c) It
d) They
22. Aangla
a) Kannada
b) English
c) Marathi
d) Urdu.

8

Note : Fill in the blank choosing the right word from the group below:
23. nanage ninna sałavaasa khanDitaa
a) BeDa
c) Ide
b) Beka
d) Ina.

Note : Tnanslate the following Kanimada question into Englis

[from cuestion No. 24 to 25]
24. Niivu yaaru?
a) who is this?
b) what is this?
c) who are you?
d) what is there?
25. Idu Enu?
a) who is this?
c) who are you?
b) what is this?
d. What is there?

Note: Fill in the blank by translating the given English word to Kannada.
[From Question No: 26 to 30]
26.
a) NAnu
b) Neenu
c) Avanu
d) AvaLu
27.

28. Teacher:---
a) HuDuga
b) Yaavaga
d) Yaake
c) Shikshaka/ki
b) Manushya
d) Shishya
29. Vegetable :
a) tarakari
c) tavaruru
b) takararu
d) tamota
\qquad
30. Garden :
a) Mane
b) Shaale
c) TooTa
d) Baagilu

17MATDIP31

Third Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Additional Mathematics - I

Time: 3 hrs .
Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Prove that $(1+\cos \theta+i \sin \theta)^{\mathrm{n}}+(1+\cos \theta-\mathrm{i} \sin \theta)^{\mathrm{n}}=2^{\mathrm{n}+1} \cos ^{\mathrm{n}}\left(\frac{\theta}{2}\right) \cos \left(\frac{\mathrm{n} \theta}{2}\right) \quad$ (08 Marks)
b. Express $\sqrt{3}+\mathrm{i}$ in the polar form and hence find its modulus and amplitude. (06 Marks)
c. Find the sine of the angle between vectors $\vec{a}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{b}=2 \hat{i}-3 \hat{j}+2 \hat{k} \quad$ (06 Marks)

OR
2 a. Express $\frac{3+4 i}{3-4 i}$ in the form $x+i y$.
(08 Marks)
b. If the vector $2 \hat{i}+\lambda \hat{j}+\hat{k}=0$ and $4 \hat{i}-2 \hat{j}-2 \hat{k}$ are perpendicular to each other, find λ.
(06 Marks)
c. Find λ, such that the vectors $2 \hat{i}-\hat{j}+\hat{k}, \hat{i}+2 \hat{j}-3 \hat{k}, 3 \hat{i}+\lambda \hat{j}+5 \hat{k}$ are coplanar.
(06 Marks)

Module-2

3 a. If $y=e^{a \sin ^{-1} x}$, prove that $\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}-\left(n^{2}+a^{2}\right) y_{n}=0$
(08 Marks)
b. With usual notations, prove that $\tan \phi=\mathrm{r} \frac{\mathrm{d} \theta}{\mathrm{dr}}$.
(06 Marks)
c. If $u=\log _{e} \frac{x^{3}+y^{3}}{x^{2}+y^{2}}$, prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=1$.
(06 Marks)

OR
4 a. Using Maclaurin's series, expand $\tan x$ upto the term containing x^{5}.
(08 Marks)
b. Find the pedal equation of $r=a(1-\cos \theta)$.
(06 Marks)
c. If $u=x+3 y^{2}-z^{3}, v=4 x^{2} y z$ and $w=2 z^{2}-x y$, find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$ at $(1,-1,0)$. (06 Marks)

Module-3

5 a. Obtain a reduction formula for $\int_{0}^{\pi / 2} \cos ^{n} x d x,(n>0)$.
(08 Marks)
b. Evaluate $\int_{0}^{a} \frac{x^{7}}{\sqrt{a^{2}-x^{2}}} d x$
(06 Marks)
c. Evaluate $\int_{1}^{2} \int_{1}^{3} x y^{2} d x d y$
(06 Marks)

OR

6 a. Obtain a reduction formula for $\int_{0}^{\pi / 2} \sin ^{n} x d x,(n>0)$.
(08 Marks)
b. Evaluate $\int_{0}^{2 a} x^{2} \sqrt{2 a x-x^{2}} d x$
(06 Marks)
c. Evaluate $\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z}(x+y+z) d x d y d z$
(06 Marks)

Module-4

7 a. A particle moves along the curve $\mathrm{x}=2 \mathrm{t}^{2}, \mathrm{y}=\mathrm{t}^{2}-4 \mathrm{t}$ and $\mathrm{z}=3 \mathrm{t}-5$, where ' t ' is the time. Find its velocity and acceleration vectors and also magnitude of velocity and acceleration at $\mathrm{t}=1$.
(08 Marks)
b. In which direction of the directional derivative of $x^{2} y z^{3}$ is maximum at $(2,1,-1)$ and find the magnitude of this maximum.
c. Show that $\overrightarrow{\mathrm{F}}=(y+z) \hat{\mathrm{i}}+(x+z) \hat{\mathrm{j}}+(x+y) \hat{\mathrm{k}}$ is irrotational.
(06 Marks)

OR
8 a. If $\phi=x y^{2} z^{3}-x^{3} y^{2} z$, find $\nabla \phi$ and $|\nabla \phi|$ at $(1,-1,1)$.
(08 Marks)
b. If $\vec{F}=(x+y+1) \hat{i}+\hat{j}-(x+y) \hat{k}$, show that $\vec{F} \cdot \operatorname{Curl} \vec{F}=0$.
(06 Marks)
c. If $x=t^{2}+1, y=4 t-3, z=2 t^{2}-6 t$ represents the parametric equation of a curve, find the angle between the tangents at $t=1$ and $t=2$.
(06 Marks)

Module-5

9 a. Solve : $\left(x \tan \frac{y}{x}-\frac{y}{x} \sec ^{2} \frac{y}{x}\right) d x=x \sec ^{2} \frac{y}{x} d y$
(08 Marks)
b. Solve : $x y\left(1+x y^{2}\right) \frac{d y}{d x}=1$
(06 Marks)
c. Solve : $\frac{d y}{d x}+\frac{y \cos x+\sin y+y}{\sin x+x \cos y+x}=0$
(06 Marks)

OR

10 a. Solve : $(3 y+2 x+4) d x-(4 x+6 y+5) d y=0$
(08 Marks)
b. Solve : $\left(1+y^{2}\right) d x=\left(\tan ^{-1} y-x\right) d y$
(06 Marks)
c. Solve : $(y \log y) d x+(x-\log y) d y=0$.
(06 Marks)

